La funzione 1/(x+1) essendo equivalente alla serie 1-x+x^2-x^3+x^4-x^5+....., convergente nell'intervallo ]-1,1 [
si puo' dire che e' analitica in quest'intervallo?
Inoltre, la funzione 1/x, non essendo definita all'origine, cioe in x=0, sicuramente non potrà avere uno sviluppo in serie di potenze, e quindi non potrà essere analitica in tutto R; sono errate queste considerazioni che ho riportato?
Grazie per le eventuali risposte;
Cordiali Saluti!
Analiticita funzioni
Serie numeriche, serie di potenze, serie di Taylor
Jump to
- Sito
- ↳ Bacheca Studenti (Massimo Gobbino) - Istituzioni di Analisi Matematica
- ↳ Bacheca Studenti (Marina Ghisi e Massimo Gobbino) - AL e AM2 per Elettronica e Telecomunicazioni
- ↳ Bacheca Studenti (Massimo Gobbino) - Complementi di Analisi Matematica (aka Analisi 2) per Fisica
- ↳ Bacheca Studenti (Marina Ghisi) - Analisi Matematica 2 per Meccanica
- ↳ Messaggi dell'amministratore
- Materiale Didattico
- ↳ Errata corrige
- ↳ Test d'esame
- ↳ Scritti d'esame
- ↳ Metodo di studio
- ↳ VideoLezioni
- Discussione di Esercizi
- ↳ Preliminari
- ↳ Numeri Complessi
- ↳ Limiti
- ↳ Successioni per ricorrenza
- ↳ Serie
- ↳ Calcolo Differenziale in una variabile
- ↳ Calcolo Integrale in una variabile
- ↳ Equazioni Differenziali
- ↳ Calcolo Differenziale in più variabili
- ↳ Calcolo integrale in più variabili
- ↳ Calcolo Vettoriale
- ↳ Algebra Lineare
- ↳ Calcolo delle Variazioni
- ↳ Istituzioni di Analisi Matematica
- ↳ Altri esercizi
- Conosciamoci
- ↳ Sondaggi
- ↳ Presentazioni
- ↳ Altro...
- Roba Vecchia
- ↳ Archivio A.A. 2004/2005
- ↳ Archivio A.A. 2005/2006
