Integrali tripli 4
Posted: Tuesday 15 May 2018, 16:04
L'esercizio in questione chiede di integrare la funzione \(|z|\) sull'insieme \(A\) tale che \(x^2+y^2+z^2\leq 4\),\(|x|\geq 1\),\(|y|\geq 1\).
Intanto si osserva che ci si può limitare a studiare il problema per \(z\geq 0\) e moltiplicare per 2, visto che l'insieme è simmetrico per \(z\).
L'insieme che si ottiene è il complementare in \(A\) dell'instersezione fra la parte superiore della sfera e un parallelepipedo con \((x,y)\in [-1,1]×[-1,1]\) e \(z\) variabile. Quindi per ottenere l'integrale richiesto basta integrare su tutta la semisfera superiore e sottrarre l'integrale sull'intersezione descritta per poi moltiplicare per 2. Tale intersezione corrisponde al parallelepipedo per \(\)\(z\in (0,\sqrt{2})\) e alla calotta sferica per \(z\in(\sqrt{3},2)\). Invece il problema sorge quando \(z\in(\sqrt{2},\sqrt{3})\) e l'intersezione corrisponde all'intersezione fra una circonferenza e un quadrato. Come si può calcolare l'area di tale intersezione volendo integrare per sezioni? È conveniente ragionare così o c'è un modo più furbo?
Intanto si osserva che ci si può limitare a studiare il problema per \(z\geq 0\) e moltiplicare per 2, visto che l'insieme è simmetrico per \(z\).
L'insieme che si ottiene è il complementare in \(A\) dell'instersezione fra la parte superiore della sfera e un parallelepipedo con \((x,y)\in [-1,1]×[-1,1]\) e \(z\) variabile. Quindi per ottenere l'integrale richiesto basta integrare su tutta la semisfera superiore e sottrarre l'integrale sull'intersezione descritta per poi moltiplicare per 2. Tale intersezione corrisponde al parallelepipedo per \(\)\(z\in (0,\sqrt{2})\) e alla calotta sferica per \(z\in(\sqrt{3},2)\). Invece il problema sorge quando \(z\in(\sqrt{2},\sqrt{3})\) e l'intersezione corrisponde all'intersezione fra una circonferenza e un quadrato. Come si può calcolare l'area di tale intersezione volendo integrare per sezioni? È conveniente ragionare così o c'è un modo più furbo?