Misura
Posted: Thursday 19 May 2016, 17:28
Buongiorno,
vorrei sapere se posso definire la misura di una sigma-algebra R come una coppia (A,f), dove A è un sottoinsieme di R e f( sostanzialmente la misura) una funzione da A nei reali non negativi ( senza + infinito) e cambiando la proprietà dell' additività numerabile con:
comunque preso un insieme numerabile di A ( con elementi a due a due disgiunti), si ha che:
- l' unione non appartiene ad A e la serie delle misure diverge
- oppure l' unione appartiene ad A, la serie delle misure converge e si ha uguaglianza ( misura dell' unione= somma delle misure).
Perché io non conosco un' insieme " che abbia il + infinito" ( o meglio non lo so costruire), quindi preferisco non avere funzioni che valgano + infinito.
grazie mille anticipo!!
vorrei sapere se posso definire la misura di una sigma-algebra R come una coppia (A,f), dove A è un sottoinsieme di R e f( sostanzialmente la misura) una funzione da A nei reali non negativi ( senza + infinito) e cambiando la proprietà dell' additività numerabile con:
comunque preso un insieme numerabile di A ( con elementi a due a due disgiunti), si ha che:
- l' unione non appartiene ad A e la serie delle misure diverge
- oppure l' unione appartiene ad A, la serie delle misure converge e si ha uguaglianza ( misura dell' unione= somma delle misure).
Perché io non conosco un' insieme " che abbia il + infinito" ( o meglio non lo so costruire), quindi preferisco non avere funzioni che valgano + infinito.
grazie mille anticipo!!