Limiti "doppi"
Posted: Wednesday 7 October 2015, 0:55
Un'altra domanda, forse banale, ma non riesco a farlo vedere formalmente. Se f(x,y) è definita su una palla aperta centrata in (0,0) e
[tex]\lim_{(x,y)\to(0,0)}f(x,y)=l \in \mathbb{R}[/tex]
possiamo concludere che le seguenti scritture sono sensate e poi corrette
[tex]\lim_{y\to0}\lim_{x\to0}f(x,y)=\lim_{x\to0}\lim_{y\to0}f(x,y)=l[/tex]?
È possibile affermare, per esempio, che esiste [tex]r>0[/tex] tale per cui [tex]\forall y \in (-r, r)[/tex] si ha [tex]\lim_{x\to0}f(x,y)=l_y \in \mathbb{R}[/tex] così da avere ben definita l'applicazione [tex]L \colon (-r, r) \to \mathbb{R} \ | \ y \mapsto l_y[/tex]
[tex]\lim_{(x,y)\to(0,0)}f(x,y)=l \in \mathbb{R}[/tex]
possiamo concludere che le seguenti scritture sono sensate e poi corrette
[tex]\lim_{y\to0}\lim_{x\to0}f(x,y)=\lim_{x\to0}\lim_{y\to0}f(x,y)=l[/tex]?
È possibile affermare, per esempio, che esiste [tex]r>0[/tex] tale per cui [tex]\forall y \in (-r, r)[/tex] si ha [tex]\lim_{x\to0}f(x,y)=l_y \in \mathbb{R}[/tex] così da avere ben definita l'applicazione [tex]L \colon (-r, r) \to \mathbb{R} \ | \ y \mapsto l_y[/tex]