Dimostrazione teorema dim ker e im
Posted: Tuesday 14 October 2014, 19:42
Salve
Nella dimostrazione alla verifica numero 2(l'ultima per intendersi) voglio dimostrare che certi vettori siano linearmente indipendentie alla fine si conclude dicendo che tutti i v(i) sono linearmente indipendenti e quindi tutti i coefficienti sono uguali a 0 ma da ipotesi si sa solo che v(1),...,v(k) sono lin. ind..
In poche parole non capisco cosa abbia implicato mettere insieme le combinazioni di v(1),...,v(k) e v(k+1),...v(n).
Forse è più semplice di quanto provi a pensare ma nel dubbio meglio chiedere
P.S. tutte le mie affermazioni fanno riferimento al pdf allegato scritto basandomi sulle lezioni di algebra lineare del Prof. Gobbino Lezione 19 pag 79
Grazie mille in anticipo
Nella dimostrazione alla verifica numero 2(l'ultima per intendersi) voglio dimostrare che certi vettori siano linearmente indipendentie alla fine si conclude dicendo che tutti i v(i) sono linearmente indipendenti e quindi tutti i coefficienti sono uguali a 0 ma da ipotesi si sa solo che v(1),...,v(k) sono lin. ind..
In poche parole non capisco cosa abbia implicato mettere insieme le combinazioni di v(1),...,v(k) e v(k+1),...v(n).
Forse è più semplice di quanto provi a pensare ma nel dubbio meglio chiedere
P.S. tutte le mie affermazioni fanno riferimento al pdf allegato scritto basandomi sulle lezioni di algebra lineare del Prof. Gobbino Lezione 19 pag 79
Grazie mille in anticipo