Page 1 of 1

Limite con ... i puntini...

Posted: Thursday 20 September 2012, 12:45
by Noisemaker
1) [tex]\mbox{Calcolare il limite:}[/tex]

[tex]\displaystyle\lim_{n\to+\infty} \sqrt{2}\cdot\sqrt[4]2\cdot\sqrt[8]2\cdots\sqrt[(2^n)]2[/tex]

Riscriviamo il limite come segue:

[tex]\displaystyle\lim_{n\to+\infty} \sqrt{2}\cdot\sqrt[4]2\cdot\sqrt[8]2\cdots\sqrt[(2^n)]2 =[/tex][tex]\displaystyle\lim_{n\to+\infty} 2^{\frac{1}{2}}\cdot2^{\frac{1}{2^2}}\cdot2^{\frac{1}{2^3}}\cdot...\cdot2^{\frac{1}{2^n}}=[/tex] [tex]\displaystyle\lim_{n\to+\infty} 2^{\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\cdots+\frac{1}{2^n}}\
&= \lim_{n\to+\infty}2^{\sum_{k=1}^n \frac{1}{2^k}},[/tex]

e consideriamo allora il limite

[tex]\displaystyle\lim_{n\to+\infty}\sum_{k=1}^n \frac{1}{2^k}[/tex]

A questo punto consideriamo la serie geometrica:

[tex]\displaystyle\sum_{n=1}^\infty \frac{1}{2^n}.[/tex]

di ragione [tex]\displaystyle\frac{1}{2}<1.[/tex] Allora, sappiamo che, essendo la ragione minore di [tex]1[/tex], la serie converge ed ha per somma (cioè per limite):

[tex]\displaystyle S_n=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1;[/tex]

allora possiamo concludere che li limite dato vale:

[tex]\displaystyle\lim_{n\to+\infty} \sqrt{2}\cdot\sqrt[4]2\cdot\sqrt[8]2\cdots\sqrt[(2^n)]2=2^1=2[/tex]


2) [tex]\mbox{Calcolare il limite:}[/tex]

[tex]\displaystyle\lim_{n\to+\infty}\left (1-\frac{1}{1+2}\right )\left (1-\frac{1}{1+2+3}\right )\left (1-\frac{1}{1+2+3+4}\right )\cdots[/tex] [tex]\displaystyle\left (1-\frac{1}{1+2+3+\cdots+n }\right )[/tex]


Scriviamo anzitutto il limite in forma compatta:

[tex]\displaystyle\lim_{n\to+\infty}\left (1-\frac{1}{1+2}\right )\left (1-\frac{1}{1+2+3}\right )\cdots[/tex] [tex]\displaystyle\left (1-\frac{1}{1+2+3+\cdots+n }\right )[/tex] [tex]\displaystyle=\prod_{k=1}^n \left (1-\frac{1}{1+2+3+\cdots+n }\right )[/tex] [tex]\displaystyle=\prod_{k=1}^n \left (1-\frac{2}{n(n+1)}\right ).[/tex]

dove naturalmente:

[tex]\displaystyle1+2+3+\cdots+n=\frac{n(n+1)}{2}[/tex]

Non avendo una somma finita di termini ma un prodotto finito di termini, non possiamo applicare direttamente la teoria delle serie; tuttavia, ricordando che la funzione logaritmo ''trasforma'' i prodotti in somme, ovvero

[tex]\displaystyle\log{(a\cdot b)}=\log{a}+\log{b}\quad \text{e generalizzando}\quad \log{(a_1\cdot a_2\cdots a_n)}[/tex] [tex]\displaystyle=\log a_1+ \log a_2\cdots \log a_n[/tex]

cioè in forma compatta:

[tex]\displaystyle\log{\prod_{k=1}^n a_k}=\sum_{k=1}^n\log{a_k};[/tex]

possiamo considerare il problema nel modo seguente: consideriamo la successione

[tex]\displaystyle x_n=\prod_{k=1}^n \left (1-\frac{2}{n(n+1)}\right ):[/tex]

si nota immediatamente che essa ha come minino [tex]0[/tex] e come [tex]\sup x_n=1:[/tex] dunque è limitata [tex]0\le x_n<1,[/tex] e assume sempre valori positivi: è lecito considerare

[tex]\displaystyle\ln x_n,\quad\mbox{per}\quad 0< x_n<1[/tex]

[tex]\displaystyle\ln x_n=\ln\prod_{k=1}^n \left (1-\frac{2}{n(n+1)}\right )=\sum_{k=1}^n\ln{\left (1-\frac{2}{n(n+1)}\right )}.[/tex]

A questo punto, studiamo la serie

[tex]\displaystyle\sum_{k=1}^\infty\ln{\left (1-\frac{2}{n(n+1)}\right )}\sim\sum_{k=1}^\infty\frac{-2}{n(n+1)}[/tex]

La serie è la serie di Mengoli, pertanto convergente alla somma [tex]-2.[/tex]

Allora, tornando al limite dato:

[tex]\displaystyle \lim_{n\to+\infty}\ln x_n= \lim_{n\to+\infty} -2\sum_{k=1}^n\frac{1}{n(n+1)}\to -2\quad\text{e dunque}\quad[/tex] [tex]\displaystyle \lim_{n\to+\infty}x_n= \lim_{n\to+\infty} e^{-2\sum_{k=1}^n\frac{1}{n(n+1)} }\to e^{-2}[/tex]

Re: Limite con ... i puntini...

Posted: Saturday 22 September 2012, 16:43
by Massimo Gobbino
Occhio: il secondo non va bene! Quando dici che la serie con i logaritmi è equivalente alla Mengoli, dici una cosa giusta, ma da quello puoi solo dedurre che converge, senza poter dire nulla sulla sua somma.

P.S. Meglio sempre fare post separati per esercizi separati.

Re: Limite con ... i puntini...

Posted: Saturday 22 September 2012, 19:17
by Noisemaker
ah... cavoli io ho sfruttato la della proprietà di linearità, cioè di addittività e omogeneità delle serie:

[tex]\displaystyle \mbox{se\,\,\,} c\in \mathbb{R} ,\,\, \displaystyle \sum_{n=0}^\infty a_n[/tex] [tex]\,\,\,\mbox{ una serie convergente ed ha per somma}\,\,\ S_a,\,\,\,[/tex] [tex]\mbox{allora anche la serie\,\,}[/tex] [tex]\displaystyle \sum_{n=0}^\infty c a_n\,\,\,\mbox{ \`e convergente e la sua somma \`e\,\,\,} cS_ a[/tex]

quindi sostanzialmente, con la strada che ho seguito, non sarei mai riuscito a calcolare il valore del limite, avrei soltanto potuto concludere che la successione converge , ma nulla di più?

Re: Limite con ... i puntini...

Posted: Saturday 22 September 2012, 20:29
by Massimo Gobbino
Con un confronto asintotico si può dire che una serie si comporta come un'altra (cioè converge o diverge come quell'altra), ma si perde ogni informazione sull'eventuale valore al quale converge.

Re: Limite con ... i puntini...

Posted: Saturday 22 September 2012, 20:35
by Noisemaker
quindi sono fregato!!!!!

Re: Limite con ... i puntini...

Posted: Saturday 22 September 2012, 20:40
by Massimo Gobbino
Noisemaker wrote:quindi sono fregato!!!!!
Non drammatizziamo così :lol:. Semplicemente non si può usare l'equivalenza asintotica. Basta fermarsi al passaggio prima ed inventarsi qualcos'altro :lol: :lol:

Re: Limite con ... i puntini...

Posted: Saturday 22 September 2012, 20:43
by Noisemaker
Massimo Gobbino wrote:
Noisemaker wrote:quindi sono fregato!!!!!
Non drammatizziamo così :lol:. Semplicemente non si può usare l'equivalenza asintotica. Basta fermarsi al passaggio prima ed inventarsi qualcos'altro :lol: :lol:
...un hint?

Re: Limite con ... i puntini...

Posted: Saturday 22 September 2012, 20:44
by Massimo Gobbino
Noisemaker wrote:...un hint?
Fare il denominatore comune dentro alla parentesi del logaritmo e ... telescopizzare!!

Re: Limite con ... i puntini...

Posted: Sunday 23 September 2012, 14:33
by Noisemaker
Massimo Gobbino wrote:
Noisemaker wrote:...un hint?
Fare il denominatore comune dentro alla parentesi del logaritmo e ... telescopizzare!!
[tex]\displaystyle =\sum_{k=2}^n\ln{\left (1-\frac{2}{k(k+1)}\right )} =\sum_{k=2}^n\ln{\left (\frac{n(n+1)-2}{n(n+1)}\right)=[/tex] [tex]\displaystyle\sum_{k=2}^n\left[\ln\left ( n(n+1)-2\right] -\ln\left[n(n+1)\right]\right]=[/tex] [tex]\displaystyle\sum_{j=3}^n\left[\ln ( j-2) -\ln j\right][/tex]

[tex](\ln 1 - \ln3) +(\ln 2 - \ln4)+[/tex][tex](\ln 3 - \ln5)+(\ln 4 - \ln6)+(\ln 5 - \ln7)+[/tex][tex](\ln 6 - \ln8)+(\ln 7 - \ln9)+\cdots+(\ln n - \ln(n+2))[/tex]

[tex]\ln 2 - \ln(n+2) = -\infty[/tex]

Re: Limite con ... i puntini...

Posted: Monday 24 September 2012, 9:01
by Massimo Gobbino
Ma non convergeva la serie dei logaritmi?

Re: Limite con ... i puntini...

Posted: Thursday 27 September 2012, 22:05
by Noisemaker
Massimo Gobbino wrote:Ma non convergeva la serie dei logaritmi?

si infatti ....

allora direi

[tex]\displaystyle =\sum_{k=2}^n\ln{\left (1-\frac{2}{k(k+1)}\right )} =\sum_{k=2}^n\ln{\left (\frac{k(k+1)-2}{k(k+1)}\right)=[/tex] [tex]\displaystyle\sum_{k=2}^n\ln{\left (\frac{k^2+k-2}{k(k+1)}\right)=\sum_{k=2}^n\ln{\left (\frac{(k-1)(k+2)}{k(k+1)}\right)=[/tex] [tex]\displaystyle \sum_{k=2}^n\ln{\left (\frac{ k-1 }{k }\cdot\frac{ k+2 }{ k+1 }\right)[/tex]

[tex]\displaystyle \sum_{k=2}^n\ln( k-1 )-\ln k +\ln(k+2)-\ln( k+1)\right)=[/tex]

[tex]\displaystyle\left( \ln1-\ln2 +\ln4-\ln3\right)+\left( \ln2-\ln3 +\ln5-\ln4\right)+\cdots+[/tex] [tex]\displaystyle\left[ \ln(n-2)-\ln(n-1) + \ln(n+1)-\ln n\right]+[/tex] [tex]\left[ \ln(n-1)-\ln n + \ln(n+2)- \ln(n+1)\right]=\ln1=0[/tex]

dunque il limite vale [tex]0[/tex] ....spero ...

Re: Limite con ... i puntini...

Posted: Tuesday 2 October 2012, 10:19
by Massimo Gobbino
Uhm, una serie di roba negativa che converge a 0 puzza un po' ... guarda bene quali termini si cancellano e quali no ...

Se vuoi essere rigoroso, dunque sicuro, trova la formula esplicita per le somme parziali e dimostrala per induzione!