trovare il limite con n che va a +oo di
e^(-n) (1+ (n/1)+(n^2/2!)+...+(n^n/n!))
(usare la variabile di Poisson non vale perchè di probabilità non ne capisco nulla...)
Ricordiamo che Cesaro I dice che "se a_n va a l allora la media dei termini di a_n ovvero ((a_0 + a_1 + a_2 + a_3 + ... + a_n)/n) va a l"...
Se qualcuno ha una soluzione comprensibile, batta un colpo!
Sembra Cesaro ma non lo è...
Limiti di successioni e funzioni, formula di Taylor
Jump to
- Sito
- ↳ Bacheca Studenti (Massimo Gobbino) - Istituzioni di Analisi Matematica
- ↳ Bacheca Studenti (Marina Ghisi e Massimo Gobbino) - AL e AM2 per Elettronica e Telecomunicazioni
- ↳ Bacheca Studenti (Massimo Gobbino) - Complementi di Analisi Matematica (aka Analisi 2) per Fisica
- ↳ Bacheca Studenti (Marina Ghisi) - Analisi Matematica 2 per Meccanica
- ↳ Messaggi dell'amministratore
- Materiale Didattico
- ↳ Errata corrige
- ↳ Test d'esame
- ↳ Scritti d'esame
- ↳ Metodo di studio
- ↳ VideoLezioni
- Discussione di Esercizi
- ↳ Preliminari
- ↳ Numeri Complessi
- ↳ Limiti
- ↳ Successioni per ricorrenza
- ↳ Serie
- ↳ Calcolo Differenziale in una variabile
- ↳ Calcolo Integrale in una variabile
- ↳ Equazioni Differenziali
- ↳ Calcolo Differenziale in più variabili
- ↳ Calcolo integrale in più variabili
- ↳ Calcolo Vettoriale
- ↳ Algebra Lineare
- ↳ Calcolo delle Variazioni
- ↳ Istituzioni di Analisi Matematica
- ↳ Altri esercizi
- Conosciamoci
- ↳ Sondaggi
- ↳ Presentazioni
- ↳ Altro...
- Roba Vecchia
- ↳ Archivio A.A. 2004/2005
- ↳ Archivio A.A. 2005/2006