Page 1 of 1
Successione non lineare non autonoma
Posted: Saturday 30 May 2015, 12:17
by gg_math
Data la successione [tex]x_{n+1}=\frac{5x_{n}+7}{3n+1}[/tex] dire se la serie [tex]\sum x_{n}^2[/tex] converge e calcolare il [tex]\lim nx_{n}[/tex].
A occhio direi che il limite è [tex]7/3[/tex], però applicare il rapporto non mi ha portato a nulla.
Per stimare come [tex]x_{n}[/tex] va a 0 posso dire che è compresa tra [tex]\frac{7}{3n+1}[/tex] e [tex]\frac{7+\epsilon}{3n+1}[/tex] e quindi concludere?
Re: Successione non lineare non autonoma
Posted: Tuesday 9 June 2015, 19:46
by C_Paradise
Ciao! Penso che l'esercizio che proponi sia l'ultimo di successioni definite per ricorrenza non lineari - studio 6? Se è così consideriamo il dato iniziale x1=2015, a spanne procederei così [tex]y_n=nx_n[/tex] da cui [tex]y_{n+1}=\left( n+1 \right)x_{n+1}=\frac{5y_n}{3n+1} + \frac{5x_n}{3n+1} + \frac{7n+7}{3n+1}[/tex], supponiamo che con quel dato iniziale tu abbia dimostrato sia che [tex]x_n[/tex] che [tex]y_n[/tex] siano limitate, fatto questo fai [tex]limsup[/tex] e [tex]liminf[/tex] ad ambo i membri dell'uguaglianza e ottieni che il limite è [tex]7/3[/tex] a patto sempre di aver dimostrato la limitatezza. Per la serie punterei sulla convergenza (ma potrei sbagliarmi) [tex]z_n=x_n^2[/tex] abbiamo [tex]z_{n+1}=\frac{25z_n}{\left(3n+1\right)^2} + \frac{70x_n+49}{\left(3n+1\right)^2}[/tex] proverei a dimostrare per induzione che [tex]z_n \le \frac{A}{n^2}[/tex] per un certo valore di A>0, se riesci a farlo concludi per confronto fra serie a termini positivi..
Re: Successione non lineare non autonoma
Posted: Tuesday 9 June 2015, 21:15
by Massimo Gobbino
Mi sembra che entrambe le strade indicate siano valide. Certo che se si vuole dimostrare che un limite è 7/3, è difficile poterlo fare con il rapporto.
Io farei così l'esercizio.
Passo 1: dimostro che la successione è limitata (dal basso da 0, dall'alto da un opportuno M): mi pare che questo sia una facile induzione.
Passo 2: dimostro che la successione tende a 0 (limitatezza + carabinieri).
Passo 3: dimostro che la successione è compresa tra 2 costanti diviso n (dal punto precedente): questo sistema la serie.
Passo 4: dimostro il 7/3 andando a mettere il passo 3 nella ricorrenza.
Non so se si è capito: se provate ad esplicitare i dettagli controlliamo.