Page 1 of 1
Successione con la ricorrenza in un integrale!
Posted: Monday 25 May 2015, 21:44
by C_Paradise
Stavo studiando la successione definita per ricorrenza nell'immagine in allegato, ma non riesco proprio a dire se la serie al punto b) converge o meno, ho dimostrato che cresce meno di 2 elevato alla 2 alla n, ma non sono riuscito a fare di meglio, qualche aiuto?
Re: Successione con la ricorrenza in un integrale!
Posted: Tuesday 26 May 2015, 18:54
by Massimo Gobbino
Beh, in brutal mode è come fare
[tex]x_{n+1}=\dfrac{x_n^2}{2}[/tex]
Ora per induzione verrebbe da dimostrare che ...
Re: Successione con la ricorrenza in un integrale!
Posted: Thursday 28 May 2015, 17:56
by C_Paradise
Per induzione sono riuscito a dimostrare che [tex]x_n\le\frac{2}{2^{2^n}}[/tex] quindi usando il criterio del rapporto con [tex]z_n=2^{2^n}x_n[/tex] ottengo [tex]\frac{z_{n+1}}{z_n}=\frac{2^{2^{n+1}}}{2^{2^n}}\cdot\frac{x_{n+1}}{x_n}=2^{2^n}\frac{\int_{0}^{x_n}\frac{\sin\left(t^2\right)}{t}\,dt}{x_n}\le2^{2^n}\cdot\frac{x_n}{2}\le1[/tex] ma non sono riuscito a fare meglio di così e sono bloccato

Re: Successione con la ricorrenza in un integrale!
Posted: Thursday 28 May 2015, 21:33
by Massimo Gobbino
Forse riesci a dimostrare anche che
[tex]x_n\leq\dfrac{2}{2^{2^n+n}}[/tex]
Re: Successione con la ricorrenza in un integrale!
Posted: Thursday 28 May 2015, 22:18
by C_Paradise
Grazie mille!
