Page 1 of 1

Serie: verifica

Posted: Tuesday 7 August 2012, 20:57
by Noisemaker
Gentile Professore, le posto un esercizio con una risoluzione di cui non sono certo ... se ha un pò di pazienza ... l'esercizio è il seguente, seguito dal mio tentativo:

Determinare, al variare del paramentro [tex]$\beta\in\mathbb{R}$[/tex] la convergenza della serie:

[tex]\displaystyle\sum_{n=1}^\infty\,\, (-1)^{\left[\sin\left(\frac{n}{n+1}\right)\right]}\cdot a_n[/tex]

dove:

[tex]a_n=\begin{cases}\displaystyle\sqrt n\ln n\sum_{k=n+1}^\infty\,\,\frac{(-1)^k}{k^2\ln^2k}, & \mbox{se }n\mbox{ dispari} \\\\ \left(\sqrt{1+\frac{1}{n^{\beta}}}-1\right)\left(\arctan\left(n^{-\frac{\beta}{2}}\right)\right)^{-1}, & \mbox{se }n\mbox{ pari}
\end{cases}[/tex]

dove [tex]$[x]$[/tex] è la parte intera di [tex]$x$[/tex]





Prima di affrontare lo studio della serie, è necessario fare alcune osservazioni, in modo da semplificare la struttura della serie

consideriamo [tex]\displaystyle(-1)^{\left[\sin\left(\frac{n}{n+1}\right)\right]}:[/tex]

la successione [tex]$ b_n= \frac{n}{n+1}=1-\frac{1}{n+1},$[/tex] è limitata superiormente da [tex]$1$[/tex] ed inferiormente da [tex]$0,$[/tex] quindi è limitata ed assume esclusivamente i valori compresi nell'intervallo [tex]$(0;1];$[/tex] in tale intervallo la successione [tex]$\sin b_n$[/tex] è positiva e limitata inferiormente da [tex]$0$[/tex] e superiormente da [tex]$\sin1<1;$[/tex] a noi tuttavia interessa la parte intera di [tex]$\sin b_n,$[/tex] che per definizione, sarà costantemente uguale a zero, in quanto la parte intera [tex]$[x]$[/tex] di un numero reale è il puù grande intero minore o ugule a [tex]$x,$[/tex] e dunque

[tex]\displaystyle\left[\sin\left(\frac{n}{n+1}\right)\right] =0 \quad\Rightarrow\quad (-1)^{\left[\sin\left(\frac{n}{n+1}\right)\right]}=1,\,\,\,\forall n[/tex]

consideriamo [tex]\displaystyle\sum_{k=n+1}^\infty\,\,\frac{(-1)^k}{k^2\ln^2k}:[/tex]

si tratta del resto della serie [tex]$\displaystyle \sum_{n=2}^\infty \frac{(-1)^n}{n^2\ln^2n},$[/tex] convergente, per il criterio di Leibniz; sappiamo allora, grazie proprio al criterio di Leibniz, che la ''stima'' del resto non supera, in valore assoluto, il termine [tex]$a_{n+1}$[/tex] della serie, e dunque abbiamo che:

[tex]\displaystyle\left|\sum_{k=n+1}^\infty\,\,\frac{(-1)^k}{k^2\ln^2k}\right|\le\frac{ 1}{(n+1)^2\ln^2(n+1)}[/tex]

Fatte queste considerazioni, la serie data diventa:

[tex]\displaystyle\sum_{n=1}^\infty (-1)^{\left[\sin\left(\frac{n}{n+1}\right)\right]}\cdot a_n =\displaystyle\sum_{n=2n+1}^\infty\,\,\left( \displaystyle\sqrt n\ln n\,\,\sum_{k= n+1}^\infty\,\,\frac{(-1)^k}{k^2\ln^2k}\right)+[/tex][tex]\displaystyle\sum_{n=2n}^\infty\,\, \left(\sqrt{1+\frac{1}{n^{\beta}}}-1\right)\left(\arctan\left(n^{-\frac{\beta}{2}}\right)\right)^{-1}[/tex]

A questo punto abbiamo la somma di due serie, che studiamo separatamente:

- per i valori dispari abbiamo la serie a termini positivi:


[tex]\displaystyle\frac{\sqrt n\ln n}{(n+1)^2\ln^2(n+1)}\sim\frac{\sqrt n\ln n}{n^2\ln^2n}=\frac{ \ln n}{n^{\frac{3}{2}}\ln^2n }=\frac{ 1}{n^{\frac{3}{2}}\ln n }\to \text{converge}[/tex]

la prima serie dunque converge per confornto asintotitco con la serie armoinica logaritmica;

-per i valori pari abbiamo la serie a termini positivi:

[tex]\displaystyle \left(\sqrt{1+\frac{1}{n^{\beta}}}-1\right)\left(\arctan\left(n^{-\frac{\beta}{2}}\right)\right)^{-1}\sim\left( \frac{1}{2n^{\beta}} \cdot n^{ \frac{\beta}{2}} \right)= \frac{1}{ n^{\frac{\beta}{2}}}[/tex]

che converge se [tex]\displaystyle\frac{\beta}{2}>1,\ \beta<2[/tex]

la serie data dunque, converge se e soltanto se entrambe le serie risultano convergenti (per la linearità), e ciò accade se e soltanto se [tex]\displaystyle$\beta<2.$[/tex]


Grazie per la pazienza!

Re: Serie: verifica

Posted: Thursday 9 August 2012, 9:28
by Massimo Gobbino
A parte la notazione disastrosa :lol: (scrivere n=2n o n=2n+1 negli indici della serie non ha nessun senso), e la bellissima disequazione finale con il [tex]\beta[/tex] :shock: :shock: , il resto va benissimo :D.

Re: Serie: verifica

Posted: Thursday 9 August 2012, 9:44
by Noisemaker
Noisemaker wrote:
[tex]\displaystyle\sum_{n=2n+1}^\infty\,\,\left( \displaystyle\sqrt n\ln n\,\,\sum_{k= n+1}^\infty\,\,\frac{(-1)^k}{k^2\ln^2k}\right)+[/tex][tex]\displaystyle\sum_{n=2n}^\infty\,\, \left(\sqrt{1+\frac{1}{n^{\beta}}}-1\right)\left(\arctan\left(n^{-\frac{\beta}{2}}\right)\right)^{-1}[/tex]
la notazione giusta sarebbe questa?

[tex]\displaystyle\sum_{j=2n+1}^\infty\,\,\left( \displaystyle\sqrt j\ln j\,\,\sum_{k= n+1}^\infty\,\,\frac{(-1)^k}{k^2\ln^2k}\right)+[/tex][tex]\displaystyle\sum_{j=2n}^\infty\,\, \left(\sqrt{1+\frac{1}{j^{\beta}}}-1\right)\left(\arctan\left(j^{-\frac{\beta}{2}}\right)\right)^{-1}[/tex]


... e mi perdoni per la disequazione.... .... a quel punto il Latex mi ha mandato in stallo!! (errore di battitura!)

Re: Serie: verifica

Posted: Thursday 9 August 2012, 9:49
by Massimo Gobbino
La notazione giusta per la somma di [tex]a_n[/tex] ristretta ai soli valori dispari di n è la seguente

[tex]\displaystyle\sum_{k=0}^{\infty}a_{2k+1}[/tex]

senza soluzioni ... creative.

E' anche vero poi che, nel caso specifico dell'esercizio, si poteva stimare la somma sui dispari con la somma su tutti gli interi (e idem per il caso dei pari).