Consiglio un link per temerari sulla famosa serie degli inversi dei quadrati dei naturali: http://en.wikipedia.org/wiki/Basel_problem
Ci sono addirittura 2 dimostrazioni, la prima delle quali (anche se non è una vera e propria dimostrazione) è davvero alla portata di tutti!!!
bye
inversi dei quadrati!
Serie numeriche, serie di potenze, serie di Taylor
Jump to
- Sito
- ↳ Bacheca Studenti (Massimo Gobbino) - Istituzioni di Analisi Matematica
- ↳ Bacheca Studenti (Marina Ghisi e Massimo Gobbino) - AL e AM2 per Elettronica e Telecomunicazioni
- ↳ Bacheca Studenti (Massimo Gobbino) - Complementi di Analisi Matematica (aka Analisi 2) per Fisica
- ↳ Bacheca Studenti (Marina Ghisi) - Analisi Matematica 2 per Meccanica
- ↳ Messaggi dell'amministratore
- Materiale Didattico
- ↳ Errata corrige
- ↳ Test d'esame
- ↳ Scritti d'esame
- ↳ Metodo di studio
- ↳ VideoLezioni
- Discussione di Esercizi
- ↳ Preliminari
- ↳ Numeri Complessi
- ↳ Limiti
- ↳ Successioni per ricorrenza
- ↳ Serie
- ↳ Calcolo Differenziale in una variabile
- ↳ Calcolo Integrale in una variabile
- ↳ Equazioni Differenziali
- ↳ Calcolo Differenziale in più variabili
- ↳ Calcolo integrale in più variabili
- ↳ Calcolo Vettoriale
- ↳ Algebra Lineare
- ↳ Calcolo delle Variazioni
- ↳ Istituzioni di Analisi Matematica
- ↳ Altri esercizi
- Conosciamoci
- ↳ Sondaggi
- ↳ Presentazioni
- ↳ Altro...
- Roba Vecchia
- ↳ Archivio A.A. 2004/2005
- ↳ Archivio A.A. 2005/2006