Search found 8 matches
- Friday 19 July 2019, 14:08
- Forum: Calcolo integrale in più variabili
- Topic: Integrale improprio con arcotangente
- Replies: 5
- Views: 7342
Re: Integrale improprio con arcotangente
Grazie mille
- Thursday 18 July 2019, 14:30
- Forum: Calcolo integrale in più variabili
- Topic: Integrale improprio con arcotangente
- Replies: 5
- Views: 7342
Re: Integrale improprio con arcotangente
C'era qualche osservazione intuitiva da fare a priori sull'integrale per farsi venire in mente l'insieme D, o qualcosa da considerare che mettesse sulla buona strada? Ho un po' di difficoltà con questo tipo di esercizi perché pur capendo le strategie risolutive una volta che le leggo, raramente mi v...
- Thursday 18 July 2019, 14:15
- Forum: Calcolo Vettoriale
- Topic: Flusso attraverso superficie parametrica
- Replies: 2
- Views: 7691
Re: Flusso attraverso superficie parametrica
Giusto, non ci avevo pensato. In effetti è diventato molto più semplice, grazie
- Monday 15 July 2019, 17:55
- Forum: Calcolo Vettoriale
- Topic: Flusso attraverso superficie parametrica
- Replies: 2
- Views: 7691
Flusso attraverso superficie parametrica
Salve, vorrei qualche suggerimento sul seguente esercizio: Sia S la superficie data da: \begin{pmatrix}x \\ y \\ z\end{pmatrix}=\begin{pmatrix}cos(u)cos(v) \\ u-v \\ u\end{pmatrix} \qquad \pi\leq u\leq\pi, \quad 0\leq v\leq\pi con normale in (0,0,\pi/2) che punta verso le x negative. Si chiede il fl...
- Saturday 13 July 2019, 14:46
- Forum: Calcolo integrale in più variabili
- Topic: Integrale improprio con arcotangente
- Replies: 5
- Views: 7342
Integrale improprio con arcotangente
Salve, vorrei delle indicazioni su come stabilire se questo integrale converge: \displaystyle\int_{R} \frac{\arctan(xy)}{x^2+x^2y^2+1}\, dx\,dy con R=[0,+\infty)\times[0,+\infty) Ho dimostrato che converge nella regione [1,+\infty)\times[1,+\infty) , ma includendo gli assi e l'origine non riesco a t...
- Thursday 20 June 2019, 23:20
- Forum: Test d'esame
- Topic: Quesito vero/falso con o-piccolo, test meccanici 2011_2
- Replies: 5
- Views: 16840
Re: Quesito vero/falso con o-piccolo, test meccanici 2011_2
Capito, forse era ovvio ma non l'avevo mai visto fare con funzioni di due o più variabili. Grazie per l'aiuto.
- Wednesday 19 June 2019, 23:49
- Forum: Test d'esame
- Topic: Quesito vero/falso con o-piccolo, test meccanici 2011_2
- Replies: 5
- Views: 16840
Re: Quesito vero/falso con o-piccolo, test meccanici 2011_2
In effetti è molto più semplice fatto così, ma si può sempre fare? Cioè per qualsiasi funzione \(f(x,y)\) che tende a zero per \((x,y)→(0,0)\) si può porre \(t=f(x,y)\) e rifarsi allo sviluppo dell'esponenziale in una variabile?
- Wednesday 19 June 2019, 13:37
- Forum: Test d'esame
- Topic: Quesito vero/falso con o-piccolo, test meccanici 2011_2
- Replies: 5
- Views: 16840
Quesito vero/falso con o-piccolo, test meccanici 2011_2
Salve, nel test d'esame in oggetto c'è il seguente quesito vero/falso: e^{x^2+y^4}=1+x^2+o((x^2+y^2)^{3/2}) per (x,y)\rightarrow(0,0) In genere svolgo questo tipo di esercizi usando la definizione di o-piccolo: proposizione vera \iff \lim_{(x,y) \to (0,0)} \frac{e^{x^2+y^4}-1-x^2}{(x^2+y^2)^{3/2}}=0...