Search found 3 matches
- Thursday 7 July 2016, 9:46
- Forum: Calcolo integrale in più variabili
- Topic: Lemma del cubetto interno
- Replies: 3
- Views: 8375
Re: Lemma del cubetto interno
In effetti così sembra tornare, senza invocare questo famigerato cubetto interno... il punto è che basta ottenere la formula del cambio di variabili (per funzioni positive) con la disuguaglianza e poi giocarsi l' arbitrarietà del diffeomorfismo e le proprietà del determinante per ottenere l' uguagli...
- Thursday 23 June 2016, 0:51
- Forum: Calcolo integrale in più variabili
- Topic: Lemma del cubetto interno
- Replies: 3
- Views: 8375
Lemma del cubetto interno
Per sfizio propongo una mia dimostrazione del cosiddetto "Lemma del cubetto interno" (vedi AM2_16_L042), basata sulla dimostrazione contrattiva del teorema della funzione inversa. Se avete altre dimostrazioni, o critiche alla mia, sarei curioso di conoscerle!
- Saturday 30 January 2016, 16:28
- Forum: Calcolo delle Variazioni
- Topic: Minimum problems + infinito
- Replies: 4
- Views: 9553
Re: Minimum problems + infinito
Confermo il fattore [tex]1/2[/tex] nel punto (3c), e sostengo che nel (3e) si riesca a mostrare agilmente che [tex]u_0\ \in C^{1,1/3}[/tex]; per esempio scrivendo la Eulero in forma integrale, si ricava che [tex]\dot{u}_0[/tex] è continua e [tex]\dot{u_0}^3[/tex] è lipschitziana che basta per conclu...