Numeri Complessi

Nell'insieme R la risoluzione di equazioni di secondo grado con discriminante negativo, non è possibile. Questo perché la funzione reale radice quadrata non è definita per numeri negativi, quindi l'insieme R non è algebricamente chiuso. L'insieme dei numeri complessi C permette di risolvere questo problema, definendo un insieme algebricamente chiuso. Dalla retta reale (dimensione uno) si passa al piano di Gauss (dimensione due).

*Il piano di Gauss è detto anche piano complesso, costituito da un asse reale(orizzontale) e un asse immaginario(verticale)

Si introduce un nuovo numero "i" chiamato "Unità immaginaria", con la seguente proprietà: $i = \sqrt{-1} \iff i^2 = -1$ Un numero complesso è un punto nel piano di Gauss, rappresentabile in diverse notazioni:

- Cartesiana z = a + ib• Trigonometrica $z = |z| (\cos (\theta) + i \sin (\theta))$ Esponenziale $z = |z| e^{i \theta}$ Dove $a = \Re(z)$ è la parte reale, $b = \Im(z)$ è la parte immaginaria $|z| = \sqrt{a^2 + b^2}$ è la distanza dal centro θ angolo in radianti, formato a partire dal semiasse positivo reale

Da quanto detto $\mathbb{R}\subseteq\mathbb{C}$ perché i numeri reali sono numeri complessi con $\mathfrak{I}(z)=0$ (la parte immaginaria è nulla) In generale, l'insieme dei numeri complessi è definito con $\mathbb{C} = \{z = x + iy, x \in \mathbb{R}, y \in \mathbb{R}\}\$

Coniugato

 $z = a + ib \Rightarrow \bar{z} = a - ib \Rightarrow z \cdot \bar{z} = |z|^2$. Il coniugato è il simmetrico rispetto all'asse reale (ha la parte immaginaria opposta)

Formule di passaggio

- Cartesiana-Trigonometrica $|z| = \sqrt{a^2 + b^2}$, $\cos(\theta) = \frac{a}{|z|}$, $\sin(\theta) = \frac{b}{|z|}$
- Trigonometrica-Cartesiana $a = |z| \cos(\theta), b = |z| \sin(\theta)$
- Trigonometrica-Esponenziale $|z|(\cos(\theta) + i\sin(\theta)) = |z|e^{i\theta}$ (grazie all'identità di Eulero $e^{i\theta} = (\cos(\theta) + i\sin(\theta))$)
- Esponenziale-Trigonometrica $|z|e^{i\theta} = |z|(\cos(\theta) + i\sin(\theta))$

*Somma di numeri complessi: la forma cartesiana è consigliata; si usano le normali regole di somme tra polinomi

Radici n-esime

Dato $z = |z| e^{i\theta} \neq 0$ le radici n-esime di tale numero è l'insieme

$$\sqrt[n]{z} = \left\{ w_k = \sqrt[n]{|z|} e^{i\left(\frac{0}{n} + \frac{2k\pi}{n}\right)} : k = 0, 1, 2, \dots, n-1 \right\}$$

*In $\mathbb C$ un numero ha esattamente n radici

Risoluzione equazioni di secondo grado complesse

Sia vogliono trovare le soluzioni di $az^2+bz+c=0$. Vale ancora la formula $z_{1,2}=\frac{-b\pm\sqrt{(\Delta)}}{2\,a}$ dove $\pm\sqrt{(\Delta)}$ rappresenta le due radici quadrate del numero complesso $\Delta = b^2 - 4 ac$. Un'equazione di secondo grado in \mathbb{C} ammette sempre due soluzioni (eventualmente coincidenti, quindi con molteplicità due)

In generale la formula risolutiva è

$$z_{1,2} = \frac{-b \pm \sqrt{|\Delta|} e^{i\frac{\arg(\Delta)}{2}}}{2a}$$

dove $\arg\left(\Delta\right)$ è l'angolo (chiamato anche argomento) del numero complesso $\Delta=b^2-4\,ac$

^{*}Prodotto di numeri complessi: la forma esponenziale è consigliata; si usano le normali regole delle potenze