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with the remaining three conditions we obtain a system of
three equations in b)d.e :

61Td t 1211-20 =0

6d t 241Te =D

- llcx) DX =D
0

which was clearly a unique solution .

The corresponding solution Uo is a cuiu
. point because

IT

F (Cfto ) = Fog) + OF (Uo, 0) + J Ñ(x2d✗

I ÷
because of ELE o ⇔ it ⇒

⇔ v⇒ because

V @) --0 and fv =D

Therefore the wine . point is unique .



(a) Standard direct method with variational formulation
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Compactness follows from Las ,p) ≥ Ip21-6-18
(were the absolute value is essential )

SCI is standard

The NBC ice ✗ =L appears ice the view . process .

(b) The ueiuiueuue is of class C
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(namely it is Lipschitz ) .

In the usual way we discover that
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(c)Y If { fm} ≤ ↳ (CON) is bounded , then
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It follows that { ten } ≤ Ecco , D) is bounded ( usual
estimate Lcx,sp) ≥ ¥ P2 ) and hence also { lur} ≤ 1%0,11)
is bounded (BC) . It follows that

Unie → all • uniformly (Ascoli - Arteta)
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Reed It can be checked that leo is the solution

corresponding to for , where for is the weak limit of fn
(which exists along the sauce subsequence) .
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listen 1 is bounded ice L2 by assumption
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This function is a competitor in the definition of
Scd, M) when M is large enough .
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Alternative : Um → 0 ice L2 (Ba) ⇒ Uma → 0 for a.e. ✗ c- Bd
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This proves that
T :L

"
→ I is Lipschitz .

A fortini T : L
"
→ it is Lipschitz .

(b)[ {fn } ≤ L2 bounded ⇒ Fm are equi £ - Holder coat .
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⇒ Fmr → to uuif . ( Ascoli - Arteta )
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but
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